Topics in the June 2008 Exam Paper for CHEM1611

Click on the links for resources on each topic.

2008-J-2:

- Assumed Knowledge
- Chemical Bonding
- Atomic Structure
- The Periodic Table

2008-J-3:

- The Shapes of Molecules
- Intermolecular forces
- Acids and Bases

2008-J-4:

- Acids and Bases
- Heterocyclic Compounds

2008-J-5:

- Alkenes
- Alcohols, Phenols, Ethers and Thiols
- Aldehydes and Ketones
- Carbohydrates

2008-J-6:

• Alkenes

2008-J-7:

• Amino Acids, Peptides and Proteins

2008-J-9:

- Alcohols, Phenols, Ethers and Thiols
- Organic Halogen Compounds

2008-J-10:

- Alkenes
- Aromatic Hydrocarbons
- Aldehydes and Ketones

2008-J-11:

- Carboxylic Acids and Derivatives
- Heterocyclic Compounds

2008-J-13:

• Amino Acids, Peptides and Proteins

22/31(a)

The University of Sydney

CHEM1611 - CHEMISTRY 1A (PHARMACY)

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2008

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent table.
- Each new question of the short answer section begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- A Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
11	9			
12	8			
13	4			
14	8			
15	6			
16	4			
17	4			
18	7			
19	7			
20	4			
21	3			
22	4			
23	4			
Total	72			

CHEM1611	2008-J-2	June 2008	22/31(a)
Complete the follow formula as required	ving table, giving either th	e systematic name or the molecular	Marks 2
Formula		Systematic name	
SO ₂			
CoCl ₂ ·6H ₂ O			
		silver chromate	
	potass	ium hydrogencarbonate	
• Complete the follow of the following spe	ving table, providing the g	round state electron configuration for eac	h 3
Species	Grou	nd state electron configuration	
nitrogen atom			
chloride ion			
manganese(II) ion			
disorders. Excess of Draw a graph show in the body and ide	the comper can occur in cases ving the relationship betwentify the 'healthy' range.	of poisoning or in Wilson's disease. een overall health and the level of coppo	er
	Cu cor	centration	
Describe one biolo	gical function of copper.		
Suggest one approa	ach for treating an excess	level of copper.	
]

Marks

8

• The molecular structure of nicotine, the addictive component of tobacco, is shown below.

List the types of intermolecular interactions that each of the following sites on nicotine would be involved in when it is dissolved in water.

Α		
В		

Provide the requested information for each of the indicated atoms in nicotine.

Atom	Geometric arrangement of the electron pairs around the atom	Hybridisation of the atom	Geometry around the atom
N-1			
N-2			
C-3			
C-4			

The pK_b of N-1 is 10.88 and the pK_b of N-2 is 5.98. Draw the structure of the predominant form of nicotine that exists in the human body at pH 7.4.

CHEM1611	2008-J-5	June 2008	22/31(a)
• Complete the follow	ving table.		Marks 8
STARTING MATE	ERIAL REAGE CONDIT	NTS/ TIONS CONSTITU FORMULA(S) ORGANIC PR	TIONAL OF MAJOR ODUCT(S)
	= HBr / CCl ₄	(solvent)	
H O OH H	H^{\oplus}/Cr_2	207 ² ^{\O}	
OH OH OH	OH	OH OH OH	OCH ₂ CH ₃
OH OH OH	OH [Ag(NH ₃) ₂]	J [⊕] / OH [⊖]	
$ \begin{array}{c} \text{OCH}_2\text{CH}\\ \text{H}_3\text{C}-\text{C}-\text{CH}_3\\ \text{OCH}_2\text{CH}\\ \end{array} $	H ₃ dilute	H⊕	
но	O H [⊕] cata	alyst	

Cyclohexene undergoes an electrophilic addition reaction with HI in CCL ₄ solvent to give iodocyclohexane. Draw the mechanism of this reaction, using curly arrows to indicate the movement of electrons. Include structures for any relevant intermediates.	CHEM1611	2008-J-6	June 2008	22/31(a)
Draw the two chair conformations of iodocyclohexane and indicate which is likely to be more stable. Briefly explain the reason for your choice.	CHEM1611 • Cyclohexene under give iodocyclohexa indicate the movem	2008-J-6 goes an electrophilic addi ne. Draw the mechanism ent of electrons. Include	June 2008 ition reaction with HI in CCl ₄ solve of this reaction, using curly arrow structures for any relevant interm	22/31(a) Vent to vs to lediates.
be more stable. Briefly explain the reason for your choice.	Draw the two chair	conformations of iodocv	clohexane and indicate which is li	kelv to
	be more stable. Br	iefly explain the reason fo	or your choice.	

• Neuron structu value f	ntin [®] is a pharmaceutical now widely used for the treatment of nerve pain. The tree of the active ingredient in Neurontin, gabapentin, is shown below. The pK_a for the carboxyl group is 3.68, whilst the pK_b value for the amine group is 3.30.	Marks 4
	O OH gabapentin NH ₂	
Explai	n whether gabapentin can reasonably be described as an amino acid.	
Orally prepar gabape suitabl	-delivered pharmaceutical agents that contain amine functional groups are often ed as hydrochloride salts, rather than as free amines. Suggest a reason why entin is not delivered as a hydrochloride salt, illustrating your answer with a e diagram.	
Gabap same r structu gabape might	entin was originally synthesised as it was anticipated that it would bind to the ecceptors as the neurotransmitter GABA (4-aminobutanoic acid). Draw the are of GABA. Suggest a reason why it might have been anticipated that entin would interact with GABA receptors, and what form such interactions take.	

2008-J-7

CHEM1611

22/31(a)

June 2008

CHEM1611	2008-J-8	June 200	08	22/31(a)
This expectation GABA receptors.	has proven to be incorre Suggest a reason why	ect, as gabapentin does this might be the case.	not interact well with	Marks
Pregabalin (mark to gabapentin as i	eted under the trade nan t is more potent. Its stru	ne Lyrica) has been dev acture is shown below.	veloped as a successo	or
	H ₂ N O OH	pregabalin I		
The pharmaceution Rank the substitut	cal formulation contains ents around the stereoce	only the (S) enantiome entre in decreasing orde	er of pregabalin. r of priority.	
highest priority			lowest priority	7
Draw the (S) ena	ntiomer of pregabalin.			

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • Insulin is an important hormone involved in the regulation of glucose availability in 4 the body. It consists of two peptide chains, one consisting of 21 amino acids (the "A" chain) and one of 30 amino acids (the "B" chain). Below are two representations of insulin, one showing the amino acid sequence and the other a stylised ribbon diagram. - N terminus of chain A Gly Ile | Val Glu -Cys Tyr Cys Asn His-Leu-Cys-Gly -His-Leu-Val--Glu Gln Gly Asn Val Glu Arg Phe N terminus of chain B Thr-Lys-Pro-Thr-Tyr-Phe-Phe Gly Define the terms primary structure, secondary structure and tertiary structure in relation to proteins. Illustrate your answer with appropriate diagram(s) and by making reference to the representations shown above.

THIS QUESTION CONTINUES ON THE NEXT PAGE.

	2008-J-14	June 2008	22/31(a
The peptide links diagram to explai consequence relat the chemistry of p	in a protein chain are said to n what is meant by this term, ting to protein structure and c proteins.	be <i>resonance stabilised</i> . Use a and indicate one important one important to be relating to	Mai 4
Modern medicine residues has been glargine insulin, t 5.4 to 6.7, thereby in the primary am without altering it	now uses insulin analogues (changed) in the treatment of he changes have increased th y reducing its solubility at phy ino acid sequence can alter the ts interaction with blood-gluc	(where one or more of the amino acid diabetes. In one such analogue, e isoelectric point of the enzyme from ysiological pH. Explain how changes he pI and solubility of the analogue	1
without altering it		050.	
without alloting it			
williout ditoring i			
williout dicornig i			
williout ditering i			
williout dicornig i			
williout dicornig i			

CHEM1611 - CHEMISTRY 1A (PHARMACY)

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions		Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	Μ
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р			

CHEM1611 - CHEMISTRY 1A (PHARMACY)

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\mathrm{Li}^{+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.04

CHEM1611 - CHEMISTRY 1A (PHARMACY)

Useful formulas

Quantum Chemistry	Electrochemistry
$E = h u = h c / \lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$4.5k_{\rm B}T = hc/\lambda$	$= (RT/nF) \times \ln K$
$T = 2.898 \times 10^6 / \lambda (\text{nm})$	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{1/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{ m f} = K_{ m f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{(1 - \frac{1}{k_1})}$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2'$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t) years	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудгоден Н 1.008																	2 нешим Не 4.003
3	4											5	6	7	8	9	10
LITHIUM LITHIUM	BERYLLIUM											BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
	MAGNESIUM Mo											ALUMINIUM	SILICON	PHOSPHORUS P	SULFUR	CHLORINE	ARGON Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM		SCANDIUM	TITANIUM Ti	VANADIUM	CHROMIUM	MANGANESE	IRON Fo	COBALT	NICKEL Nji		zinc 7 n		GERMANIUM	ARSENIC A C	SELENIUM	BROMINE Br	KRYPTON Kr
3 9.10	40.08	44.96	47.88	5 0.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	strontium Sr	YTTRIUM V	zirconium 7 r	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM Dh	PALLADIUM DJ			INDIUM	TIN Sn	ANTIMONY	TELLURIUM	IODINE	XENON Xo
85.47	87.62	∎ 88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	∎ 126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM		HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM		PLATINUM	GOLD	MERCURY	THALLIUM		BISMUTH	POLONIUM	ASTATINE	RADON
US	Ba		HI 178.40	1 80.05	W	Ke	US	102.22	Pt	AU	Hg	204.27	PD	B1	PO	At	KN
07	00	90 102	1/8.49	100.95	105.05	100.2	190.2	192.22	195.09	190.97	200.39	204.57	207.2	208.98	[210.0]	[210.0]	[222.0]
ð / francium	ðð radium	89-103	1U4 RUTHERFORDIUM	1U5 DUBNIUM	1UO SEABORGIUM	IU/ BOHRIUM	1U8 hassium	109 MEITNERIUM	1 1 U darmstadtium	III ROENTGENIUM							
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]							
	5	7	58	59	60	61	62	63	64	6	5	66	67	68	69	70	71

LANTHANIDES

ACTINIDES

LANTHANUM

La

138.91

89

ACTINIUM

Ac

[227.0]

CERIUM

Ce

140.12

90

THORIUM

Th

232.04

PRASEODYMIUM

Pr

140.91

91

PROTACTINIUM

Pa

[231.0]

NEODYMIUM

Nd

144.24

92

URANIUM

U

238.03

PROMETHIUM

Pm

[144.9]

93

NEPTUNIUM

Np

[237.0]

SAMARIUM

Sm

150.4

94

PLUTONIUM

Pu

[239.1]

EUROPIUM

Eu

151.96

95

AMERICIUM

Am

[243.1]

GADOLINIUM

Gd

157.25

96

CURIUM

Cm

[247.1]

TERBIUM

Tb

158.93

97

BERKELLIUM

Bk

[247.1]

DYSPROSIUM

Dy

162.50

98

CALIFORNIUM

Cf

[252.1]

HOLMIUM

Ho

164.93

99

EINSTEINIUM

Es

[252.1]

ERBIUM

Er

167.26

100

FERMIUM

Fm

[257.1]

THULIUM

Tm

168.93

101

MENDELEVIUM

Md

[256.1]

YTTERBIUM

Yb

173.04

102

NOBELIUM

No

[259.1]

LUTETIUM

Lu

174.97

103

LAWRENCIUM

Lr

[260.1]

PERIODIC TABLE OF THE ELEMENTS